
Fast and Accurate Distance, Penetration, and Collision Queries 
Using Point-Sphere Trees and Distance Fields

Introduction Classical Voxmap-Pointshell Algorithm

New Haptic Data Structures

Collision Detection and Force Computation

Collision detection, force computation, and proximity queries are 
fundamental in interactive gaming, assembly simulations, or virtual 
prototyping. However, many available methods have to find a trade-
off between the accuracy and the high computational speed required 
by haptics (1 kHz). Our haptic rendering algorithm is based on the 
Voxmap-Pointshell Algorithm introduced by McNeely et al. New 
optimized haptic data structures enable an accurate collision 
response of (partially) arbitrarily complex geometries within 1 ms.

The classical Voxmap-Pointshell Algorithm uses point clouds and 
voxelized structures for computing collisions. In each cycle, the 
penetration of the points in the voxelized object is computed. This 
penetration depends on the discrete voxel layer in which the point 
is. The single collision force of one point is its normal scaled by its 
penetration (v), and the sum of all single forces gives the total 
collision force. The cross-products of forces and points yield 
torques.

Pointshells are point-sampled representations of objects. All 
points are uniformly distributed on the surface and each one has 
an inwards pointing normal vector. Our approach generates point-
sphere trees able to (i) localize likely colliding regions and
(ii) sample the object with several resolutions.

Voxmaps are voxelized representations of objects. Each voxel contains its 
voxel layer value l (surface voxels: l = 0). The voxel value multiplied by the 
voxel size (s) gives the approximate distance from the voxel to the surface. 

Our approach introduces voxelized distance fields, where each voxel 
contains the exact distance (v) from the voxel center to the surface. These 

structures enable accurate penetration and distance queries.1. Neighbor points of the initial 
point-soup are organized in 
clusters.

2. The parent point of each 
cluster belongs to the upper level 
in the tree, which is also 
clustered.

3. All points and children points 
within a cluster are enclosed 
with a minimal sphere.

1. After detecting the voxel in which 
the point is, the optimal (closest) 

voxel neighbor set is chosen.

2. A local gradient of the distance field 
is computed in the neighborhood. This 

gradient is used to locally interpolate 
the penetration of the point.

1. The uppest cluster with the sphere that encloses all points 
is pushed to the queue.

2. The queue containing likely colliding clusters is 
popped until it is empty. The algorithm checks whether 
each popped cluster’s sphere is in collision; if so, the 
parent point of the cluster is checked for collision and 
children clusters are pushed to the queue. The single 
collision force that corresponds to each colliding point is 
the normal vector scaled with the locally interpolated 
distance to the surface.

2.2 Traversal in the Point-Sphere Hierarchy:
Sphere checks yield likely colliding regions, whereas the point-tree enables 
using higher resolutions where required. In red: points checked for collision;

In orange: points with spared collision check.

2.1 Algorithm Flowchart:

From Pointshells to Point-Sphere Trees From Voxmaps to Interpolated Distance Fields

0

00

0

00

0

0

1

-1 -1 -1

Pi

l = 0

ni

Fi

ei
s

C

... ...

FIFO Queue

C0 POP Sphere 
check

NO COLLISION

COLLISION

Pop from front until 
queue is emtpy

Check parent point for 
collision and store 

corresponding collision 
force

Push back all children 
clusters of current 
colliding cluster

PUSH

* parent cluster

* children clusters

* cluster
points

* cluster parent 
point

sphere

x

y

z

vα = v (xα)

v0 = v (x0) vβ = v (xβ)

vγ = v (xγ)

∇v 

x

C0
...

Hierarchy FIFO Queue

C0PUSH

ti ti + 1 ms

Experimental Results

0 250 500 750 1000
0

1

2

3

C
o

m
p

u
ta

tio
n

 T
im

e
 (

m
s)

 

 
Hierarchy Checked
All Points Checked

0 250 500 750 1000
0

0.5

1

N
o

rm
a

liz
e

d
 T

o
rq

u
e

 (
−

)

0 250 500 750 1000
0

1

2

Simulation Step

C
o

lli
d

in
g

 P
o

in
ts

 (
×
 1

0
0

0
)

1. Steps 0 - 250
The pin object (yellow) 
approaches hole object 

(green). As desired, 
only insignificant 

computation times are 
registered in the 

hierarchy traversal.

2. Steps 250 - 500
As expected, 

computation time 
increases with the 
contact points (and 

surface), but almost no 
torques appear in the 

axis of the pin.

3. Steps 500 - 5000
The number of colliding points increases 

suddenly when the two faces of the objects 
collide. Then, the pin object is rotated around 

its pin without increasing the computation 
time. The torque in the axis of the pin 

increases with the rotated angle, as expected. 
Data structures are partially displayed.

~ 17 x

~ 1.5 x

Mikel Sagardia, Thomas Hulin
Institute of Robotics and Mechatronics, DLR

SIGGRAPH 2013

Note: The experiment was performed with an Intel(R) Xeon(R) X5550 @ 2.67GHz and 4 GB memory. The voxelmap has 281x161x161 voxels and the pointshell 8691 points, with 3 children/cluster.


